Skip to contents

Extracts a minimum planar graph (MPG) and is also the first step in grains of connectivity (GOC) modelling. Both patch-based and lattice MPGs can be extracted.

Usage

MPG(cost, patch, ...)

# S4 method for class 'RasterLayer,RasterLayer'
MPG(cost, patch, ...)

# S4 method for class 'RasterLayer,numeric'
MPG(cost, patch, ...)

Arguments

cost

A RasterLayer giving a landscape resistance surface, where the values of each raster cell are proportional to the resistance to movement, dispersal, or gene flow for an organism in the landscape feature they represent. Missing values NA are acceptable (but see below). Negative values are not. To extract an MPG with Euclidean links (i.e., and not least-cost path links) set cost[] <- 1.

patch

A raster of class RasterLayer for a patch-based analysis OR an integer for a lattice analysis. If a raster is given it must be of the same extent, origin and projection as cost and be binary, without missing values, where patches=1 and non-patches=0. For lattice analyses, an integer gives the spacing in raster cells between focal points in the lattice.

...

Additional arguments (not used).

Value

A mpg() object.

Details

Use this function to create a minimum planar graph (MPG) that can be further analyzed using igraph::igraph() routines. It is also the first step in grains of connectivity (GOC) modelling.

Note

Researchers should consider whether the use of a patch-based MPG or a lattice MPG model is appropriate based on the patch-dependency of the organism under study. Patch-based models make most sense when animals are restricted to, or dependent on, a resource patch. Lattice models can be used as a generalized and functional approach to scaling resistance surfaces.

Rasters should be projected and not in geographic coordinates (i.e. raster::projection(cost) should not contain "+proj=longlat") or the function will issue a warning. In unprojected cases consider using raster::projectRaster() to change to an appropriate coordinate system for the location and extent of interest that balances both distance and areal accuracy. See https://spatialreference.org/ for location-specific suggestions. Use of geographic coordinates will result in inaccurate areal and distance measurements, rendering the models themselves inaccurate.

References

Fall, A., M.-J. Fortin, M. Manseau, D. O'Brien. (2007) Spatial graphs: Principles and applications for habitat connectivity. Ecosystems 10:448:461.

Galpern, P., M. Manseau. (2013a) Finding the functional grain: comparing methods for scaling resistance surfaces. Landscape Ecology 28:1269-1291.

Galpern, P., M. Manseau. (2013b) Modelling the influence of landscape connectivity on animal distribution: a functional grain approach. Ecography 36:1004-1016.

Galpern, P., M. Manseau, A. Fall. (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis, and application for conservation. Biological Conservation 144:44-55.

Galpern, P., M. Manseau, P.J. Wilson. (2012) Grains of connectivity: analysis at multiple spatial scales in landscape genetics. Molecular Ecology 21:3996-4009.

See also

Author

Paul Galpern, Sam Doctolero, Alex Chubaty

Examples

## Load raster landscape
tiny <- raster::raster(system.file("extdata/tiny.asc", package = "grainscape"))

## Create a resistance surface from a raster using an is-becomes reclassification
tinyCost <- raster::reclassify(tiny, rcl = cbind(c(1, 2, 3, 4), c(1, 5, 10, 12)))
## Produce a patch-based MPG where patches are resistance features=1
tinyPatchMPG <- MPG(cost = tinyCost, patch = tinyCost == 1)
## Explore the graph structure and node/link attributes
graphdf(tinyPatchMPG)
#> [[1]]
#> [[1]]$v
#>    name patchId patchArea patchEdgeArea coreArea centroidX centroidY
#> 1     5       5        38            37        1  8.684211 95.157895
#> 2     7       7        30            28        2 19.700000 98.000000
#> 3     8       8        46            45        1 43.847826 96.021739
#> 4     9       9        61            58        3 60.795082 96.811475
#> 5    12      12         1             1        0 71.500000 99.500000
#> 6    14      14        65            64        1 84.084615 96.346154
#> 7    19      19         9             9        0 98.944444 95.055556
#> 8    22      22         7             7        0 20.214286 94.642857
#> 9    28      28        14            14        0 51.642857 86.714286
#> 10   29      29         2             2        0 99.000000 88.000000
#> 11   30      30       100            95        5 31.660000 74.740000
#> 12   31      31         4             4        0 98.750000 84.750000
#> 13   32      32         4             4        0  3.000000 83.000000
#> 14   37      37        11            11        0 12.045455 79.954545
#> 15   40      40         7             7        0 24.071429 76.500000
#> 16   41      41        72            67        5 18.680556 70.902778
#> 17   46      46         2             2        0 56.000000 72.500000
#> 18   48      48        32            32        0 26.593750 60.875000
#> 19   50      50         9             9        0 10.500000 61.166667
#> 20   54      54         5             5        0 37.700000 56.700000
#> 21   55      55         4             4        0 47.500000 57.250000
#> 22   56      56        39            39        0 58.448718 50.782051
#> 23   60      60         6             6        0 98.500000 51.666667
#> 24   61      61         4             4        0 71.500000 48.750000
#> 25   62      62        14            14        0 19.000000 43.214286
#> 26   64      64         4             4        0 10.750000 43.500000
#> 27   67      67        76            72        4 40.171053 37.276316
#> 28   68      68         4             4        0 85.000000 42.250000
#> 29   73      73         1             1        0 99.500000 39.500000
#> 30   74      74        32            32        0 17.125000 35.312500
#> 31   76      76        15            15        0 60.166667 34.766667
#> 32   78      78         2             2        0 99.000000 36.000000
#> 33   80      80        21            21        0 78.404762 31.166667
#> 34   84      84        18            18        0  6.555556 24.944444
#> 35   85      85        12            12        0 42.833333 25.500000
#> 36   86      86        55            55        0 86.063636 21.445455
#> 37   93      93        42            39        3 24.285714 14.190476
#> 38   95      95        31            31        0 55.919355 11.725806
#> 39  100     100        26            26        0 90.038462  3.807692
#> 40  103     103         1             1        0 54.500000  4.500000
#> 41  105     105         2             2        0 63.000000  1.000000
#> 42  106     106         2             2        0 35.000000  0.500000
#> 43  107     107         2             2        0 80.000000  0.500000
#> 
#> [[1]]$e
#>      e1  e2 linkId lcpPerimWeight startPerimX startPerimY endPerimX endPerimY
#> 1    62  74      1             12        17.5        41.5      17.5      40.5
#> 2    30  41      2             12        24.5        72.5      24.5      71.5
#> 3    30  40      3             10        24.5        75.5      24.5      74.5
#> 4     7  22      4             10        20.5        96.5      21.5      96.5
#> 5     5   7      5              5        11.5        98.5      12.5      98.5
#> 6    80  86      6             10        82.5        28.5      81.5      28.5
#> 7    73  78      7             15        99.5        37.5      99.5      38.5
#> 8    29  31      8             10        98.5        85.5      98.5      86.5
#> 9    19  29      9             10        99.5        89.5      99.5      90.5
#> 10   67  85     10             20        42.5        28.5      42.5      30.5
#> 11   41  48     11             20        22.5        63.5      22.5      64.5
#> 12   40  41     12             20        19.5        76.5      21.5      76.5
#> 13   37  41     13             20        14.5        76.5      14.5      77.5
#> 14    8  28     14             25        48.5        92.5      50.5      90.5
#> 15    9  12     15             20        67.5        99.5      70.5      99.5
#> 16   12  14     16             30        76.5        99.5      72.5      99.5
#> 17   30  48     17             40        33.5        63.5      29.5      62.5
#> 18    8   9     18             32        53.5        94.5      50.5      95.5
#> 19   48  54     19             35        30.5        56.5      35.5      55.5
#> 20   95 103     20             40        54.5         5.5      56.5       7.5
#> 21   62  64     21             44        11.5        41.5      15.5      41.5
#> 22    5  22     22             40        12.5        93.5      18.5      93.5
#> 23   32  37     23             50         3.5        81.5       9.5      81.5
#> 24   74  84     24             40        10.5        26.5      13.5      30.5
#> 25   55  56     25             45        52.5        53.5      49.5      57.5
#> 26    5  32     26             45         3.5        85.5       6.5      89.5
#> 27    9  28     27             40        52.5        88.5      55.5      92.5
#> 28   68  80     28             45        83.5        40.5      80.5      35.5
#> 29   14  19     29             45        96.5        96.5      90.5      94.5
#> 30   30  54     30             50        38.5        58.5      37.5      65.5
#> 31    5  37     31             45        12.5        90.5      12.5      82.5
#> 32   54  55     32             50        39.5        57.5      45.5      57.5
#> 33   64  74     33             52        11.5        41.5      14.5      38.5
#> 34   86 100     34             55        89.5         7.5      89.5      15.5
#> 35  100 107     35             54        86.5         1.5      81.5       0.5
#> 36   41  50     36             55        11.5        70.5      12.5      63.5
#> 37   56  76     37             64        58.5        37.5      58.5      45.5
#> 38   56  61     38             59        69.5        47.5      62.5      48.5
#> 39  103 105     39             65        62.5         2.5      54.5       3.5
#> 40    9  14     40             60        77.5        94.5      68.5      94.5
#> 41    8  30     41             69        40.5        91.5      36.5      85.5
#> 42   95 105     42             75        58.5         7.5      62.5       2.5
#> 43   67  76     43             75        45.5        34.5      57.5      34.5
#> 44   55  67     44             75        45.5        44.5      47.5      55.5
#> 45   56  67     45             75        53.5        50.5      45.5      44.5
#> 46   14  29     46             75        98.5        88.5      87.5      91.5
#> 47    7   8     47             75        38.5        96.5      25.5      95.5
#> 48   74  93     48             80        18.5        31.5      18.5      17.5
#> 49   28  46     49             81        54.5        83.5      55.5      73.5
#> 50   37  40     50             80        14.5        81.5      22.5      77.5
#> 51   86 107     51             85        80.5         1.5      82.5      13.5
#> 52   93 106     52             85        31.5        13.5      34.5       1.5
#> 53   84  93     53             80         8.5        22.5      18.5      17.5
#> 54   30  55     54             85        37.5        65.5      45.5      57.5
#> 55    7  30     55             85        24.5        92.5      32.5      85.5
#> 56   85  95     56             85        45.5        23.5      52.5      15.5
#> 57   14  31     57             85        97.5        85.5      87.5      91.5
#> 58   22  37     58             85        19.5        92.5      14.5      81.5
#> 59    7  40     59             85        24.5        92.5      24.5      78.5
#> 60   60  73     60             88        98.5        49.5      98.5      39.5
#> 61   54  67     61             95        39.5        56.5      43.5      44.5
#> 62   76  85     62             95        46.5        25.5      56.5      32.5
#> 63   22  40     63             95        20.5        92.5      22.5      77.5
#> 64   50  64     64            105        10.5        58.5      10.5      45.5
#> 65   28  30     65            107        37.5        84.5      48.5      85.5
#> 66  105 107     66            105        78.5         0.5      64.5       0.5
#> 67   78  86     67            105        98.5        34.5      88.5      26.5
#> 68   32  41     68            100         2.5        80.5      13.5      73.5
#> 69   85  93     69            105        40.5        23.5      30.5      14.5
#> 70   30  46     70            105        54.5        72.5      37.5      70.5
#> 71   78  80     71            112        98.5        34.5      81.5      34.5
#> 72   68  78     72            114        84.5        40.5      98.5      36.5
#> 73  103 106     73            115        35.5         1.5      54.5       3.5
#> 74   93  95     74            115        31.5        13.5      51.5      12.5
#> 75   60  68     75            130        86.5        44.5      96.5      51.5
#> 76   68  73     76            129        85.5        41.5      98.5      39.5
#> 77   76  95     77            123        61.5        32.5      60.5      15.5
#> 78   61  68     78            123        70.5        46.5      83.5      42.5
#> 79   48  50     79            135        12.5        59.5      22.5      60.5
#> 80   64  84     80            125         8.5        43.5       4.5      28.5
#> 81   95 106     81            125        35.5         1.5      51.5       9.5
#> 82   50  62     82            130        10.5        58.5      16.5      46.5
#> 83   46  55     83            127        46.5        58.5      55.5      71.5
#> 84   46  56     84            132        55.5        71.5      56.5      56.5
#> 85   76  80     85            144        75.5        28.5      61.5      32.5
#> 86   67  74     86            151        37.5        30.5      20.5      31.5
#> 87   67  93     87            146        28.5        15.5      37.5      29.5
#> 88    9  46     88            140        63.5        92.5      56.5      73.5
#> 89   62  67     89            180        34.5        39.5      21.5      40.5
#> 90   31  60     90            162        97.5        53.5      97.5      83.5
#> 91   61  76     91            200        69.5        47.5      62.5      36.5
#> 92   61  80     92            210        70.5        46.5      76.5      35.5
#> 93   95 107     93            195        60.5        10.5      79.5       1.5
#> 94   80  95     94            201        60.5        15.5      76.5      27.5
#> 95   86  95     95            208        81.5        20.5      60.5      15.5
#> 96   48  67     96            210        30.5        56.5      37.5      44.5
#> 97   14  46     97            220        56.5        73.5      78.5      93.5
#> 98   14  60     98            290        97.5        53.5      84.5      89.5
#> 99   46  61     99            365        57.5        72.5      72.5      50.5
#> 100  14  68    100            358        81.5        91.5      83.5      42.5
#> 101  14  61    101            432        78.5        93.5      72.5      50.5
#> 
#> 

## Find the mean patch area (see igraph manual for use of V() and E())
mean(igraph::V(tinyPatchMPG@mpg)$patchArea)
#> [1] 21.67442

## Quick visualization of the MPG
if (interactive())
  plot(tinyPatchMPG, col = c("grey", "black"), legend = FALSE)

## Additional graph extraction scenarios
## Produce a lattice MPG where focal points are spaced 10 cells apart
tinyLatticeMPG <- MPG(cost = tinyCost, patch = 10)
if (interactive())
  plot(tinyLatticeMPG)